United States Patent

US009286233B2

(12) 10) Patent No.: US 9,286,233 B2
Kaplan et al. (45) Date of Patent: Mar. 15, 2016
(54) OLDEST OPERATION TRANSLATION 5,802,568 A * 9/1998 CsoppenszKy 711/136
LOOK-ASIDE BUFFER 5,895,503 A * 4/1999 Belgard GO6F 12/1036
711/200
. . 5,898,854 A * 4/1999 Abramson et al. 712/218
(75) Inventors: Dav1d. Kaplan., Austin, TX (US); John 6,266,744 B1* 7/2001 Hughes etal. L T11/146
M. King, Austin, TX (US) 6,415,360 B1* 7/2002 Hughes et al. .. 711/139
6,539,457 B1* 3/2003 Mullaet al. . . 711/131
(73) Assignee: Advanced Micro Devices’ Inc‘, 2002/0199067 Al* 12/2002 Patel 6F 12/0831
711/145
Sunnyvale, CA (US) 2003/0177332 AL* 9/2003 Shiota ...oooooooorre 711/203
" 2006/0277390 Al* 12/2006 Zuraskietal. .. . 711207
() Notice: Sub]ect. to any dlsclalmer,. the term of this 2010/0299499 A1* 11/2010 Gollaetal. ... L T712/206
patent is extended or adjusted under 35 2012/0124296 Al* 5/2012 Bryant 711136
U.S.C. 154(b) by 118 days. 2013/0103923 ALl* 4/2013 Panccocoevvvvecennene 711/207
(21) Appl. No.: 13/599,269 OTHER PUBLICATIONS
. Thomas et.al. “Translation Caching: Skip, Don’t Walk (the Page
(22) Filed: Aug. 30,2012 Table)” ACM Jun. 19-23, 2010, section 2, 3.*
(65) Prior Publication Data * cited by examiner
US 2014/0068175 Al Mar. 6,2014
Primary Examiner — Yaima Rigol
(51) Int.CL Assistant Examiner — Tasnima Matin
GO6F 13/00 (2006.01)
GO6F 12/10 (2006.01) &7 ABSTRACT
GOGF 9/30 (2006.01) A method is provided for dispatching a load operation to a
GO6F 12/08 (2006.01) processing device and determining that the operation is the
(52) US.CL oldestload operation. The method also includes executing the
CPC ... GO6F 12/1027 (2013.01); GOG6F 9/30 operation in response to determining the operation is the
(2013.01); GO6F 12/0888 (2013.01) oldest load operation. Computer readable storage media for
(58) Field of Classification Search performing the method are also provided. An apparatus is
None provided that includes a translation look-aside buffer (TLB)
See application file for complete search history. content addressable memory (CAM), and includes an oldest
operation storage buffer operationally coupled to the TLB
(56) References Cited CAM. The apparatus also includes an output multiplexor

U.S. PATENT DOCUMENTS

5,390,310 A * 2/1995 Wellandc..cocen 711/203
5,491,806 A * 2/1996 Horstmann et al. . 711207
5,694,574 A * 12/1997 Abramson etal. ... 711/140

5,751,983 A * 5/1998 Abramsonetal. 712/216

operationally coupled to the TLB CAM and to the oldest
operation storage buffer. Computer readable storage media
for adapting a fabrication facility to manufacture the appara-
tus are also provided.

32 Claims, 5 Drawing Sheets

L8 Circuitry 136

Load Gueue 490

US 9,286,233 B2

Sheet 1 of 5

Mar. 15, 2016

U.S. Patent

1112

i J4nNold

g1iL

£
g
£
p,

soRpEI O]

J

]
L
[
]
O
<
o
™

{108S8004 STIydeIn)

10 (d9) wun
Buissanaly songdess

ey saydeisy
A
[]
H TN

(W) Aowsiy
SE800Y LWopUEY
orueuis

: B 51548
............. BB /
; {N«D) nuny oet
......................... Buissasold (Biias J
A 1/@3 vt

G611

{shun
Agidsig

{(s)soinagy
wndug

{s)enira(]
ndng

S I-Tg!
jeiaydued

041

08l

481

081

US 9,286,233 B2

Sheet 2 of 5

Mar. 15, 2016

U.S. Patent

g5 Fnsid
08¢ vE FUNSIL
{.ge4,) Qypoe uoneouge
ot
Z AN
| T
| | oYL
m Ndo " T
” — b_ AnoRD 9L
— D e
512 el
sycry
M
Ndd
diy /el uosiig

US 9,286,233 B2

Sheet 3 of 5

Mar. 15, 2016

U.S. Patent

a9y pmmt.mcm.tmo,m
5

udijesippeon

JBUNG LGNS0

ESEGDR-RTI Db Tolled

ey

Afmenenen G 0 4NSDS G
5G¥

(et
PR3t ialeB vich Bo okl ity) »

v 2inbi4

423

Ty andinond

A

EN

A

A

WV

SG seyngesnpeat

0op 24AL ASOWRUsfSsaIppe [RatsAd

g1l

A

AW gL
-

2

AbY BREMNN L

|

e S

S Isenkopeot

oy

iS5 2 APPR SEDLY PROT

US 9,286,233 B2

Sheet 4 of 5

Mar. 15, 2016

U.S. Patent

ar

a.nbi4

[PUSIUESUUR U USSR SN UUS U DU U UUN U SO SUU SUUS U U UL UUSUUS UG U UL UUS UG USRS SO U U UUR VU U U UUN UUR UUS U UU UL SR UUS UG UG U SUUS UG VUG SUU SO UG UUR UG SRS UUN UUR U UGS USSR U SUUS SUUS UG U SO

GeLiopt

[
C

T ansng peo

GEL Amnoad gL

oG

Y

P
=

«————- Ly — — = —
< GGt
< £zy
< 09t
< Sy

US 9,286,233 B2

Sheet 5 of 5

Mar. 15, 2016

U.S. Patent

558
GERLIEIAOU P

W

Foe]

.......................... o G ainbi{

TRingngssHpeny
TEISep0sipRay
1E18ahayinecy
s pRY L

S AL

ON

o5
idpAgesnnesy
[SSpIGSpEDT e
TEsskaynesy
H3(d pueIs -

&% 1S8PI0 8 peoy

pra]
FATAT AROIR U =
diquapey L S8A

N
SBERT
UYL
mm\f R e CZ
. i igsiapngasapegy {ifeamaitey
005 | oeseopeol @ Vel R el

T=asebanpnoy ucHesUelsy
Naid 3584

US 9,286,233 B2

1
OLDEST OPERATION TRANSLATION
LOOK-ASIDE BUFFER

BACKGROUND

1. Field of the Invention

Embodiments presented herein relate generally to comput-
ing systems and processing devices, and, more particularly, to
a method and apparatus for determining and executing the
oldest load operation in a processing device.

2. Description of Related Art

Electrical circuits and devices that execute instructions and
process data have evolved becoming faster and more com-
plex. With the increased performance and low power
demands of modern data processor architectures (e.g., multi-
core processors), execution of speculative memory opera-
tions, as well as non-cacheable (e.g., memory-mapped [/O)
instructions has become more complex. Designing a proces-
sor capable of executing these instructions efficiently, while
avoiding problematic conditions including live-lock states
and coherency problems, is particularly problematic.

In some previous solutions, load queues included special
flip-flops to hold physical addresses and memory types for
each load instruction. In some cases, each load queue
included two sets of these flip-flops in case of a misaligned
instruction. These previous solutions relied upon saving the
TLB information (e.g., physical address and/or memory type)
after a TLB hit for each load and using the saved information
for subsequent processing. In such an implementation, the
saved information would be used even if the TLB would
return a different status (e.g., a hit was previously returned by
the TLB, but the TLB most recently returned miss). Further,
although these implementations may be architecturally cor-
rect, the previous solutions require a significant number of
extra flip-flops in their respective designs, for holding this
TLB information.

Embodiments presented herein eliminate or alleviate the
problems inherent in the state of the art described above.

SUMMARY OF EMBODIMENTS

In one aspect of the present invention, a method is pro-
vided. The method includes dispatching a load operation to a
processing device and determining that the operation is the
oldest load operation. The method also includes executing the
operation in response to determining the operation is the
oldest load operation.

In another aspect of the invention, a non-transitory, com-
puter-readable storage device encoded with data that, when
executed by a processing device, adapts the processing device
to perform a method is provided. The method includes dis-
patching a load operation to a processing device and deter-
mining that the operation is the oldest load operation. The
method also includes executing the operation in response to
determining the operation is the oldest load operation.

In another aspect of the invention, an apparatus is provided.
The apparatus includes a translation look-aside buffer (TLB)
content addressable memory (CAM) and an oldest operation
storage buffer operationally coupled to the TLB CAM. The
apparatus also includes an output multiplexor operationally
coupled to the TLB CAM and to the oldest operation storage
buffer.

In yet another aspect of the invention, a non-transitory,
computer-readable storage device encoded with data that,
when executed by a fabrication facility, adapts the fabrication
facility to manufacture an apparatus is provided. The appara-
tus includes a translation look-aside buffer (TLB) content

10

25

40

45

55

2

addressable memory (CAM) and an oldest operation storage
buffer operationally coupled to the TLB CAM. The apparatus
also includes an output multiplexor operationally coupled to
the TLB CAM and to the oldest operation storage buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be understood by reference
to the following description taken in conjunction with the
accompanying drawings, in which the leftmost significant
digit(s) in the reference numerals denote(s) the first figure in
which the respective reference numerals appear, and in
which:

FIG. 1 schematically illustrates a simplified block diagram
of'a computer system, according to one embodiment;

FIG. 2 shows a simplified block diagram of a circuit that
includes a central processing unit (CPU) and translation look-
aside buffer (TLB) circuitry, according to one embodiment;

FIG. 3A provides a representation of a silicon die/chip that
includes one or more circuits as shown in FIG. 2, according to
one embodiment;

FIG. 3B provides a representation of a silicon wafer which
includes one or more die/chips that may be produced in a
fabrication facility, according to one embodiment;

FIG. 4A illustrates a simplified block diagram of the trans-
lation look-aside buffer (TLB) circuitry of FIG. 2, according
to one embodiment;

FIG. 4B illustrates a simplified block diagram of a load
queue in connection with the translation look-aside buffer
(TLB) circuitry of FIG. 2, according to one embodiment; and

FIG. 5 illustrates a flowchart depicting determining and
executing the oldest load operation in a processing device,
according to one embodiment.

While the embodiments herein are susceptible to various
modifications and alternative forms, specific embodiments
thereof have been shown by way of example in the drawings
and are herein described in detail. It should be understood,
however, that the description herein of specific embodiments
is not intended to limit the invention to the particular forms
disclosed, but, on the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within the
scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION

Tustrative embodiments of the instant application are
described below. In the interest of clarity, not all features of an
actual implementation are described in this specification. It
will of course be appreciated that in the development of any
such actual embodiment, numerous implementation-specific
decisions may be made to achieve the developers’ specific
goals, such as compliance with system-related and/or busi-
ness-related constraints, which may vary from one imple-
mentation to another. Moreover, it will be appreciated that
such a development effort might be complex and time-con-
suming, but may nevertheless be a routine undertaking for
those of ordinary skill in the art having the benefit of this
disclosure.

Embodiments of the present application will now be
described with reference to the attached figures. Various
structures, connections, systems and devices are schemati-
cally depicted in the drawings for purposes of explanation
only and so as to not obscure the disclosed subject matter with
details that are well known to those skilled in the art. Never-
theless, the attached drawings are included to describe and
explain illustrative examples of the present embodiments.
The words and phrases used herein should be understood and

US 9,286,233 B2

3

interpreted to have a meaning consistent with the understand-
ing of those words and phrases by those skilled in the relevant
art. No special definition of a term or phrase, i.e., a definition
that is different from the ordinary and customary meaning as
understood by those skilled in the art, is intended to be
implied by consistent usage of the term or phrase herein. To
the extent that a term or phrase is intended to have a special
meaning, i.e., a meaning other than that understood by skilled
artisans, such a special definition will be expressly set forth in
the specification in a definitional manner that directly and
unequivocally provides the special definition for the term or
phrase.

As used herein, the terms “substantially” and “approxi-
mately” may mean within 85%, 90%, 95%, 98% and/or 99%.
Insome cases, as would be understood by a person of ordinary
skill in the art, the terms “substantially” and “approximately”
may indicate that differences, while perceptible, may be neg-
ligent or be small enough to be ignored. Additionally, the term
“approximately,” when used in the context of one value being
approximately equal to another, may mean that the values are
“about” equal to each other. For example, when measured, the
values may be close enough to be determined as equal by one
of ordinary skill in the art.

As discussed herein, an “instruction” may be a program-
mer level (e.g., an x86 instruction or instruction related to an
ARM architecture or the like). Further, x86 instructions may
be broken down internally into multiple micro-instructions
(which may be operated upon by, for example, a load store
unit of a processor). As used herein, an “instruction” may be
an instruction or operation as described above, or may be
another instruction type as would be apparent to one of ordi-
nary skill in the art having the benefit of this disclosure.

Embodiments presented herein generally relate to deter-
mining the oldest load operation in a processing device for
execution through the use of an oldest operation TLB buffer
that may be used to store the translation for the oldest load
operation in the system. Processing devices (e.g., single- and
multi-core microprocessors (CPUs) and graphics processors
(GPUs)) may execute instructions that reference non-cache-
able memory. That is, the data referenced by that instruction
may be prohibited from being stored in a cache due system
software policies. Non-cacheable loads, however, present an
interesting problem to a load/store unit. Because non-cache-
able data is not cached, loads that reference non-cacheable
data (non-cacheable loads) are not permitted to be executed
speculatively (in most architectures) by the processor. The
determination of whether a load is cacheable or non-cache-
able is done by the “memory type” associated with the linear
address. A translation look-aside buffer (TLB) structure is
typically used to cache linear-to-physical address translations
as well as memory types for each linear address. However,
there is no guarantee that upon multiple TLB lookups on
behalf of the same instruction, the same result is returned
from the TLB. In particular, if on one “pick” (execution
through the main load pipeline) a load hits the TLB, on a
second “pick” it may miss the TLB. Such a miss may occur
due to a number of factors such as limitations on TLB size or
the replacement of a TLB entry by an unrelated instruction
between the first and second “picks.” This scenario of missing
the TLB on subsequent “picks” is estimated to be uncommon,
and as such need not require a high-performance solution;
however it may be supported by the system. For this reason, it
may be beneficial for the system to reliably determine that an
instruction is the oldest operation in the system prior to its
execution. The oldest operation TLB buffer may store the
translation for a non-cacheable instruction (or cacheable
instruction, in various embodiments) when it is determined to

10

15

20

25

30

40

45

50

55

60

65

4

be the oldest instruction/operation in the system. Once the
translation is stored in the oldest operation TLB buffer, the
instruction/operation may be executed by the system because
aTLB “hit” is guaranteed (i.e., the TLB translation will not be
missing or changed) by virtue of the instruction being the
oldest instruction in the system.

The execution of instructions that reference non-cacheable
memory is also complicated in that misaligned loads (loads
that span two or more pages) have special rules. In particular,
to avoid consistency issues, both halves of a misaligned load
must have a valid translation before the operation can be
non-speculatively executed. In the case of an instruction that
references cacheable memory, a misalign may be a load that
spans two or more cache lines.

Additionally, when physical address flip-flops are not uti-
lized in the load queues to hold each instruction’s physical
address, this introduces the potential for live-locks as it may
be hard for the design to guarantee the oldest load in the
machine can successfully make progress and complete. A
live-lock problem may occur when a load cannot be executed
until its translation (typically both halves of a misalign) is
present in the TLB, but due to the presence of other instruc-
tions in the machine, this does nothappen as the other instruc-
tions may continually kick out the oldest load’s TLB entries.
The embodiments described herein avoid this problem
because the oldest load has a special buffer to hold its trans-
lation; that is, no other system component or other instruc-
tion/operation can use the oldest operation buffer in the TLB.
As long as an address can get a valid translation one time the
buffer will hold its translation from that point forward and it
will not be dependent on its TLB entry remaining present in
the TLB. It should be noted that while embodiments
described herein may refer to the execution of non-cacheable
instructions, the described embodiments may also have appli-
cability to cacheable instructions, for example, in cases for
preventing live-locks.

The embodiments described herein allow for removing the
large amount of flip-flops previously required to hold the
physical address and memory type for each load instruction.
In addition to power savings, this may also decrease timing
pressure in critical areas. Furthermore, this removal is esti-
mated to result in no significant performance loss because it is
estimated that most translations will in fact remain present in
the TLB for multiple picks of the load instruction; however in
the event that the translation does not remain present in the
TLB, the embodiments described herein allow the system to
still execute the oldest load operation and make forward
progress. Finally, the embodiments described herein are very
useful for avoiding live-lock type problems.

Turning now to FIG. 1, a block diagram of an exemplary
computer system 100, in accordance with an embodiment of
the present application, is illustrated. In various embodiments
the computer system 100 may be a personal computer, a
laptop computer, a handheld computer, a tablet computer, a
mobile device, a telephone, a personal data assistant
(“PDA™), a server, a mainframe, a work terminal, a music
player, and/or the like. The computer system includes a main
structure 110 which may be a computer motherboard, circuit
board or printed circuit board, a desktop computer enclosure
and/or tower, a laptop computer base, a server enclosure, part
of'a mobile device, personal data assistant (PDA), or the like.
In one embodiment, the main structure 110 includes a graph-
ics card 120. In one embodiment, the graphics card 120 may
be a Radeon™ graphics card from Advanced Micro Devices
(“AMD”) or any other graphics card using memory, in alter-
nate embodiments. The graphics card 120 may, in different
embodiments, be connected on a Peripheral Component

US 9,286,233 B2

5

Interconnect “(PCI””) Bus (not shown), PCI-Express Bus (not
shown) an Accelerated Graphics Port (“AGP”) Bus (also not
shown), or any other computer system connection. It should
be noted that embodiments of the present application are not
limited by the connectivity of the graphics card 120 to the
main computer structure 110. In one embodiment, the com-
puter system 100 runs an operating system such as Linux,
UNIX, Windows, Mac OS, and/or the like. In one or more
embodiments, the computer system 100 may include one or
more system registers (not shown) adapted to store values
used by the computer system 100 during various operations.

In one embodiment, the graphics card 120 may contain a
processing device such as a graphics processing unit (GPU)
125 used in processing graphics data. The GPU 125, in one
embodiment, may include one or more embedded/non-em-
bedded memories, such as one or more caches 130. The GPU
caches 130 may be L1, L2, higher level, graphics specific/
related, instruction, data and/or the like. In various embodi-
ments, the embedded memory(ies) may be an embedded ran-
dom access memory (“RAM”), an embedded static random
access memory (“SRAM”), or an embedded dynamic random
access memory (“DRAM”). In alternate embodiments, the
memory(ies) may be on the graphics card 120 in addition to,
orinstead of, being embedded in the GPU 125, for example as
DRAM 155 on the graphics card 120 as shown in FIG. 1. In
various embodiments the graphics card 120 may be referred
to as a circuit board or a printed circuit board or a daughter
card or the like.

In one embodiment, the computer system 100 includes a
processing device such as a central processing unit (“CPU”)
140, which may be connected to a northbridge 145. In various
embodiments, the CPU 140 may be a single- or multi-core
processor, or may be a combination of one or more CPU cores
and a GPU core on a single die/chip (such an AMD Fusion™
APU device). The CPU 140 may be of an x86 type architec-
ture, an ARM type processor, and/or the like. In one embodi-
ment, the CPU 140 may include one or more cache memories
130, such as, but not limited to, L1, [.2, level 3 or higher, data,
instruction and/or other cache types. In one or more embodi-
ments, the CPU 140 may be a pipe-lined processor. The CPU
140 and northbridge 145 may be housed on the motherboard
(not shown) or some other structure of the computer system
100. It is contemplated that in certain embodiments, the
graphics card 120 may be coupled to the CPU 140 via the
northbridge 145 or some other computer system connection.
For example, CPU 140, northbridge 145, GPU 125 may be
included in a single package or as part of a single die or
“chips” (not shown) or as a combination of packages. Alter-
native embodiments which alter the arrangement of various
components illustrated as forming part of main structure 110
are also contemplated. In certain embodiments, the north-
bridge 145 may be coupled to a system RAM (or DRAM)
155; in other embodiments, the system RAM 155 may be
coupled directly to the CPU 140. The system RAM 155 may
be of any RAM type known in the art and may comprise one
or more memory modules; the type of RAM 155 does not
limit the embodiments of the present application. For
example, the RAM 155 may include one or more DIMMs. As
referred to in this description, a memory may be a type of
RAM, a cache or any other data storage structure referred to
herein.

In one embodiment, the northbridge 145 may be connected
to a southbridge 150. In other embodiments, the northbridge
145 and southbridge 150 may be on the same chip in the
computer system 100, or the northbridge 145 and southbridge
150 may be on different chips. In one embodiment, the south-
bridge 150 may have one or more [/O interfaces 131, in

10

15

20

25

30

35

40

45

50

55

60

65

6

addition to any other I/O interfaces 131 elsewhere in the
computer system 100. In various embodiments, the south-
bridge 150 may be connected to one or more data storage
units 160 using a data connection or bus 199. The data storage
units 160 may be hard drives, solid state drives, magnetic
tape, or any other writable media used for storing data. In one
embodiment, one or more of the data storage units may be
USB storage units and the data connection 199 may be a USB
bus/connection. Additionally, the data storage units 160 may
contain one or more I/O interfaces 131. In various embodi-
ments, the central processing unit 140, northbridge 145,
southbridge 150, graphics processing unit 125, DRAM 155
and/or embedded RAM may be a computer chip or a silicon-
based computer chip, or may be part of a computer chip or a
silicon-based computer chip. In one or more embodiments,
the various components of the computer system 100 may be
operatively, electrically and/or physically connected or
linked with a bus 195 or more than one bus 195.

In one or more embodiments, the computer system 100
may include translation look-aside buffer (TLB) circuitry
135. In one embodiment, the TLB circuitry 135 may include
a components adapted to provide functionality for determin-
ing the oldest load instruction for execution in the computer
system 100, the CPU 140 and/or the GPU 125. In other
embodiments, components adapted to provide functionality
for determining the oldest load instruction may reside in other
system blocks, e.g., a retirement unit, re-order buffer (ROB)
unit, and/or the like), or in a combination of the TLB circuitry
and other system blocks. The components of the TLB cir-
cuitry 135 are discussed in further detail below, in FIG. 4A.
The TLB circuitry 135 may comprise a silicon die/chip and
include software, hardware and/or firmware components. In
different embodiments, the TLB circuitry 135 may be pack-
aged in any silicon die package or electronic component
package as would be known to a person of ordinary skill inthe
art having the benefit of this disclosure. In alternate embodi-
ments, the TLB circuitry 135 may be a circuit included in an
existing computer component, such as, but not limited to, the
CPU 140, the northbridge 145, the graphics card 120 and/or
the GPU 125. In one embodiment, TLB circuitry 135 may be
communicatively coupled to the CPU 140, the northbridge
145, the RAM/DRAM 155 and/or their respective connec-
tions 195. As used herein, the terms “TLB circuitry” or
“TLB” (e.g., TLB circuitry 135) may be used to refer a physi-
cal TLB chip or to TLB circuitry included in a computer
component, to circuitry of the TLB circuitry 135, or to the
functionality implemented by the TLB. In accordance with
one or more embodiments, the TLB circuitry 135 may func-
tion as, and/or be referred to as, a portion of a processing
device. In some embodiments, some combination of the GPU
125, the CPU 140, the TLB circuitry 135 and/or any hard-
ware/software computer 100 units respectively associated
therewith, may collectively function as, and/or be collectively
referred to as, a processing device. In one embodiment, the
CPU 140 and TLB circuitry 135, or the CPU 140, the north-
bridge 145 and the TLB circuitry 135 and their respective
interconnects may function as a processing device.

In different embodiments, the computer system 100 may
be connected to one or more display units 170, input devices
180, output devices 185 and/or other peripheral devices 190.
It is contemplated that in various embodiments, these ele-
ments may be internal or external to the computer system 100,
and may be wired or wirelessly connected, without affecting
the scope of the embodiments of the present application. The
display units 170 may be internal or external monitors, tele-
vision screens, handheld device displays, and the like. The
input devices 180 may be any one of a keyboard, mouse,

US 9,286,233 B2

7

track-ball, stylus, mouse pad, mouse button, joystick, scanner
or the like. The output devices 185 may be any one of a
monitor, printer, plotter, copier or other output device. The
peripheral devices 190 may be any other device which can be
coupled to a computer: a CD/DVD drive capable of reading
and/or writing to corresponding physical digital media, a
universal serial bus (“USB”) device, Zip Drive, external
floppy drive, external hard drive, phone and/or broadband
modem, router/gateway, access point and/or the like. The
input, output, display and peripheral devices/units described
herein may have USB connections in some embodiments. To
the extent certain exemplary aspects of the computer system
100 are not described herein, such exemplary aspects may or
may not be included in various embodiments without limiting
the spirit and scope of the embodiments of the present appli-
cation as would be understood by one of skill in the art.

Turning now to FIG. 2, a block diagram of an exemplary
TLB circuitry 135, CPU 140 and/or northbridge 145, in
accordance with an embodiment of the present application, is
illustrated. In one embodiment, the TLB circuitry 135, CPU
140 and/or northbridge 145 may contain one or more cache
memories 130. The TLB circuitry 135, CPU 140 and/or
northbridge 145, in one embodiment, may include L1, .2 or
other level cache memories 130. To the extent certain exem-
plary aspects of the TLB circuitry 135, CPU 140 and/or
northbridge 145 and/or one or more cache memories 130 are
not described herein, such exemplary aspects may or may not
be included in various embodiments without limiting the
spiritand scope of the embodiments of the present application
as would be understood by one of skill in the art.

Turning now to FIG. 3A, in one embodiment, the TLB
circuitry 135, CPU 140 and/or northbridge 145 and the
cache(s) 130 may reside on a silicon chips/die 340 and/or in
the computer system 100 components such as those depicted
in FIG. 1. The silicon chip(s) 340 may be housed on the
motherboard (e.g., 110) or other structure of the computer
system 100. In one or more embodiments, there may be more
than one TLB circuitry 135, CPU 140 and/or northbridge 145
and/or cache memory 130 on each silicon chip/die 340. As
discussed above, various embodiments of the TLB circuitry
135, CPU 140 and/or northbridge 145 may be used in a wide
variety of electronic devices.

Turning now to FIG. 3B in accordance with one embodi-
ment, and as described above, one or more of the TLB cir-
cuitry 135, CPU 140 and/or northbridge 145 may be included
on the silicon die/chips 340 (or computer chip). The silicon
die/chips 340 may contain one or more different configura-
tions of the TLB circuitry 135, CPU 140 and/or northbridge
145. The silicon chips 340 may be produced on a silicon wafer
330 in a fabrication facility (or “fab””) 390. That is, the silicon
watfers 330 and the silicon die/chips 340 may be referred to as
the output, or product of, the fab 390. The silicon die/chips
340 may be used in electronic devices, such as those
described above in this disclosure.

Turning now to FIG. 4A, a graphical representation of the
TLB circuitry 135 in one or more embodiments, is shown. In
one embodiment, the TLB circuitry 135 may include a TLB
content addressable memory (CAM) 410, a TL.B multiplexor
(MUX) 415, an oldest operation TLB buffer 420, and/or an
oldest-load multiplexor 425. As shown in FIG. 4A, a linear
address for an operation to be executed may be provided to the
TLB CAM 410 by a load linear address input line 440. The
TLB CAM 410 may hold one or more entries relating to
address of the operation to be executed. In one or more
embodiments, TLB CAM 410 may check to determine if one
of its one or more entries matches the linear address of the
load operation presented on the load linear address input line

10

15

20

25

30

35

40

45

55

60

o

5

8

440 and provide the corresponding physical address and
memory type to the TLB multiplexor 415 using address lines
442, based upon the TLB CAM load request line 445. In
various embodiments, this may referred to as a “hit” or an
“address hit” and may be output from the TLB CAM 410 on
HitOutput line 411. In one embodiment, the HitOutput line
may be a logical OR of one or more signals corresponding to
one or more entries in the TLB CAM 410. The TLB multi-
plexor 415 may be used to select a particular address line 442
using the TLB multiplexor select line 447. In one or more
embodiments, the TLB multiplexor select line 447 may be
controlled according to the TLB CAM 410. For example, the
TLB multiplexor select line 447 may be based upon a TLB
“hit” in the TLB CAM 410 (e.g., HitOutput 411). The address
line 442 may then be output to the oldest-load multiplexor
425 and/or the oldest operation TLB buffer 420 on physical
address/memory type line 450. In one or more embodiments,
the oldest operation TL.B buffer 420 may store the translation
for the oldest load based upon the LoadlsOldest line 460. In
one or more embodiments, the oldest operation TLB buffer
420 may comprise one or more registers, flip-flops, and/or
memory structures (e.g., small RAMs or caches) and may
hold a physical address and memory type information for the
oldestload in a processor or CPU (e.g., CPU 140 or GPU 125)
of a processing device (e.g., computer system 100). It is
contemplated that in computer systems, or the like, with
multiple processors and/or multi-core processors, each pro-
cessor and/or core may have its own TLB circuitry 135. The
output of the oldest operation TLB buffer 420 may be con-
nected to the oldest-load multiplexor 425 using buffer output
line 452, in some embodiments. The oldest-load multiplexor
425 may select between the lines 450 and 452 by way of the
LoadUseBuffer line 455. In one embodiment, the HitOutput
411 may be forced as asserted if the LoadUseBuffer line 455
is asserted. The output of the oldest-load multiplexor 425
(i.e., the TLB result) may, in one or more embodiments, be
transmitted to a load/store unit (not shown) by line 465.

It should be noted that, in one or more embodiments, the
oldest operation TLB buffer 420 may be duplicated or
doubled in size (420a, 4205) to accommodate misaligned
operations that span more than one cache line. In such an
embodiment, an additional multiplexor 422, connected to the
oldest operation TLB buffers 420a/4205 via lines 421a/421b
respectively, may be used to select between the misaligned
segments stored in the oldest operation TLB buffers 420a/
4205 by using a select line LoadMisalign 423.

Table 1 one (below) shows values for three signals that may
be used by the TLB circuitry 135, in one or more embodi-
ments, to affect the operation of the TLB circuitry 135.

TABLE 1

LoadRequest LoadIsOldest LoadUseBuffer Description

1 0 X
(“Don’t Care”)
1 1 0

Normal TLB lookup

TLB lookup; store the
translation in the

oldest operation TLB
buffer upon a TLB

“hit”

Bypass the TLB CAM,
instead use the translation
from the oldest operation
TLB buffer

In Table 1, as in accordance with one embodiment, the Loa-
dRequest signal may correspond to the TLB CAM load
request line 445, as shown in FIG. 4A. In accordance with one

US 9,286,233 B2

9

embodiment, the L.oadIsOldest signal may correspond to the
signal on the LoadIsOldest line 460, as shown in FIG. 4A. In
accordance with one embodiment, the .oadUseBuffer signal
may correspond to the signal on the L.oadUseBuffer line 455,
as shown in FIG. 4A. The functionality affected by the signals
shown in Table 1, in accordance with the embodiments
depicted herein, is explained in further detail below with
respect to FIG. 5.

Turning now to FIG. 4B, a graphical representation of the
TLB circuitry 135 and its connections to an exemplary load
queue 490, in accordance with one or more embodiments, is
shown. In one embodiment, the load queue 490 and the TLB
circuitry may be part of a CPU 140 and/or a GPU 125. The
load queue 490, may in one or more embodiments, provide
one or more control signals to the TLB circuitry 135 (as
exemplarily depicted (FIG. 4) and described above. The load
queue 490 may hold one or more instruction entries 495 (1-n)
which may correspond to one or more instructions that a
computer system (e.g., 100) or a CPU/GPU (e.g., 140/125)
may wish to execute. The one or more instruction entries 495
(1-n) may include address data, memory type data, instruc-
tion type data, instruction state data, the “pick” number of the
instruction (described in further detail with respect to FI1G. 5§
below) and/or other relevant data as would be understood by
one of ordinary skill in the art having the benefit of this
disclosure. Based upon the data of the one or more instruction
entries 495 (1-n), the load queue 490 may transmit one or
more signals (423, 445,447, 455, 460 as described above with
respect to FIG. 4A) to the TLB circuitry 135. In one embodi-
ment, the load queue may provide the TLB multiplexor select
line 447 to the TLB circuitry 135, while in other embodiments
the TLB CAM 410 may provide this signal. In some embodi-
ments, the TLB multiplexor select line 447 may comprise a
combination of signals from the load queue 490 and the TL.B
CAM 410.

In one or more embodiments, the TLB circuitry 135 may
provide one or more (m) signals 499 to the load queue 490.
The load queue 490 may use the one or more (m) signals 499
to a state machine/algorithm 497. The state machine/algo-
rithm 497 may then update the contents of one or more
instruction entries 495 (1-n) based upon the received one or
more (m) signals 499 from the TLB circuitry 135. For
example, instruction state data relating to whether the instruc-
tion is the oldest load in the system may be transmitted in the
one or more (m) signals 499 from the TLB circuitry 135 to the
load queue 490, or in the alternative, from a retirement unit or
an ROB unit to the load queue 490, where the one or more (m)
signals 499 may include information related to various TLB
states (e.g., “hit”, “miss”, etc.). Based upon the determination
by the state machine/algorithm 497, one or more of the
instruction entries 495 (1-n) may be updated.

Turning now to FIG. 5, an exemplary flowchart depicting
determination for execution of the oldest load operation in a
processing device, in one or more embodiments, is shown.
FIG. 5 depicts a nested, iterative selection process 500 that
may be performed by the TLB circuitry 135 in one or more
embodiments, as shown in FIGS. 4A-4B and described
above. The description below, in accordance with one
embodiment, shows a flow for an aligned operation. How-
ever, one of ordinary skill in the art, having the benefit of this
disclosure, will realize that the flow and embodiments
described herein may be modified to accommodate mis-
aligned load instructions as well.

In one or more embodiments, operations may be first dis-
patched to a load/store (LS) unit (not shown) upon which the
operations may wait for their linear addresses to be generated
by an address generation unit (AGU) (not shown). The

10

15

20

25

30

35

40

45

50

55

60

65

10

detailed functions and operations of the LS unit and the AGU
are known in the art and are not discussed in detail except as
pertaining to the embodiments described herein. After an
address is determined for an operation, the linear address for
the operation may be transmitted to the TLB circuitry (e.g.,
TLB circuitry 135) and/or aload queue at 505. In one embodi-
ment, this may be referred to as a “load.” The load may be
eligible to be “picked” for execution (510); as referred to
herein, the “pick” at 510 may be called the “first pick”. The
“first pick” may use the first row combination of control
signals in Table 1, as shown above. During the “first pick”, the
load’s linear address may be sent to the TLB CAM 410 via
line 440. If the TLB CAM 410 responds with a “miss” (i.e.,
not a “hit”), the flow may proceed to 520 where the translation
for the load may be procured, for example using potential
other TLB structures, a tablewalker (e.g., a mechanism that
performs a look-up of a page table structure in memory to
determine an address translation), or the like (all of which are
known in the art) or some combination thereof. Upon pro-
curement of the translation at 520, the load may be eligible
again for a “first pick” and the flow may proceed to 510.

In one or more embodiments, a TLB “hit” may be deter-
mined (e.g., at 515, 545). The TLB CAM 410 may provide a
“hit” output corresponding to the number of TLB CAM 410
entries for which a valid translation is stored/cached. The
output may be a logical OR of the indication(s) of the one or
more entries in the TLB CAM 410. That is, the TLB CAM
410 “hit” output may be asserted if any one of the entries in
the TLB CAM 410 is a “hit”. In one embodiment, the HitOut-
put 411 may be forced as asserted if the LoadUseBuffer line
455 is asserted. Once a TLB “hit” is obtained at 515, the
memory type of the operation may be checked to determine if
the load is cacheable (at 525). If the load is cacheable, the flow
may proceed down a different path (not shown), for example
checking a cache, store queue, and or the like, to get the
correct data to execute the load instruction at 530. If it is
determined at 525 that the load is non-cacheable, the load
waits until it is the oldest instruction in the system instruction
pipeline at 535. When the load is determined to be the oldest
instruction, the load may be referred to as a non-speculative
operation. When the load is determined to be the oldest
instruction, a “second pick” may be made at 540 using the
second combination of control signals, as shown in Table 1.
As the TLB CAM 410 contents may have changed between
the time of 505 and 540, a TL.B “hit” is not guaranteed. The
flow may proceed to 545, where if a TLB “miss” occurs, the
flow may then proceed back to 520. After the translation is
procured at 520, the flow may proceed again to 540 via line
522 (because the load has been determined to be the oldest
instruction (535)) and the 540 process may be repeated as
described above. If a TLB “hit” occurs at 545, the translation
for the load may be stored by the oldest operation TLB buffer
420, and the load may then eligible for a “third pick” at 550.
The “third pick” at 550 may use the last combination of
signals as shown in Table 1 above, indicating the TLB cir-
cuitry 135 may use the translation that was stored during 540.
During the “third pick” 550, a TLB “hit” is guaranteed; as
such, the load may proceed directly to 555 where its non-
cacheable transaction may be transmitted for execution.

Still referring to FIG. 5, in the case of a misaligned instruc-
tion load, the flow may be modified such that each portion of
the misaligned instruction (e.g., each cache line) may be
processed according to selection process 500. In such
embodiments, the system may wait to execute the instruction
until each portion of the misaligned instruction is determined
to be the oldest instruction (540) and each portion of the
misaligned instruction is stored in oldest operation TLB

US 9,286,233 B2

11

buffer 420a/b. Further, in such embodiments, the selection
process 500 may be performed independently, sequentially,
in parallel, substantially in parallel, or in an overlapping
manner for each portion of a misaligned instruction.

Itis contemplated that the elements as shown in FIG. 5 may
not be limited to the order in which they are described above.
In accordance with one or more embodiments, the elements
shown in FIG. 5 may be performed sequentially, in parallel, or
in alternate order(s) without departing from the spirit and
scope of the embodiments presented herein. It is also contem-
plated that the flowcharts may be performed in whole, or in
part(s), in accordance with one or more embodiments pre-
sented herein. That is, the flowcharts shown in the Figures
need not perform every element described in one or more
embodiments. Additionally, as mentioned above, the flow
described in FIG. 5 may be applicable to cacheable instruc-
tions, for example, in cases for preventing live-locks. For
example, cacheable loads may follow the same flow shown
for non-cacheable loads, e.g., asserting the “second pick” and
“third pick” signals as needed, in order to avoid live-lock
problems.

Further, it is also contemplated that, in some embodiments,
different kinds of hardware descriptive languages (HDL) may
be used in the process of designing and manufacturing very
large scale integration circuits (VLSI circuits) such as semi-
conductor products and devices and/or other types semicon-
ductor devices. Some examples of HDL are VHDL and Ver-
ilog/Verilog-X1, but other HDL formats not listed may be
used. In one embodiment, the HDL code (e.g., register trans-
ferlevel (RTL) code/data) may be used to generate GDS data,
GDSII data and the like. GDSII data, for example, is a
descriptive file format and may be used in different embodi-
ments to represent a three-dimensional model of a semicon-
ductor product or device. Such models may be used by semi-
conductor manufacturing facilities to create semiconductor
products and/or devices. The GDSII data may be stored as a
database or other program storage structure. This data may
also be stored on a computer readable storage device (e.g.,
data storage units 160, RAMs 155 (including embedded
RAMs, SRAMs and/or DRAMSs), compact discs, DVDs,
solid state storage devices and/or the like). In one embodi-
ment, the GDSII data (or other similar data) may be adapted
to configure a manufacturing facility (e.g., through the use of
mask works) to create devices capable of embodying various
aspects described herein, in the instant application. In other
words, in various embodiments, this GDSII data (or other
similar data) may be programmed into a computer, processor
or controller, which may then control, in whole or part, the
operation of a semiconductor manufacturing facility (or fab)
to create semiconductor products and devices. For example,
in one embodiment, silicon wafers containing one or more
CPUs 140, GPUs 125, TLB circuitry 135, hardware state
machines and/or algorithms (not shown), caches 130, and/or
the like may be created using the GDSII data (or other similar
data).

It should also be noted that while various embodiments
may be described in terms of TLB circuitry associated various
processors or instruction execution, it is contemplated that the
embodiments described herein may have a wide range of
applicability, for example, in various devices that include
processing devices, as would be apparent to one of skill in the
art having the benefit of this disclosure.

The particular embodiments disclosed above are illustra-
tive only, as the embodiments herein may be modified and
practiced in different but equivalent manners apparent to
those skilled in the art having the benefit of the teachings
herein. Furthermore, no limitations are intended to the details

10

15

20

25

30

35

40

45

50

55

60

65

12

of construction or design as shown herein, other than as
described in the claims below. It is therefore evident that the
particular embodiments disclosed above may be altered or
modified and all such variations are considered within the
scope of the claimed invention.
Accordingly, the protection sought herein is as set forth in
the claims below.
The invention claimed is:
1. A method, comprising:
dispatching an operation to a processing device;
in response to determining that the operation is the oldest
load operation:
storing a translation for the operation in a buffer config-
ured to hold only the translation for the oldest load
operation in a processing system; and
executing the operation using the translation.
2. The method of claim 1, further comprising:
generating an address for the operation subsequent to the
dispatching of the operation to a load-store unit.
3. The method of claim 2, further comprising:
transmitting the address to a translation look-aside buffer
(TLB); and
determining whether the TLB returns an address hit or an
address miss.
4. The method of claim 3, further comprising:
performing a page translation in response to determining
an address miss.
5. The method of claim 4, wherein performing the page
translation comprises performing a tablewalk.
6. The method of claim 4, further comprising:
performing one or more actions until an address hit is
returned by the TLB, the one or more actions compris-
ing:
determining whether the TLB returns an address hit or
an address miss in response to performing the page
translation; and
performing a subsequent page translation in response to
determining the most recent address miss.
7. The method of claim 3, further comprising:
performing, in response to determining an address hit, at
least one of:
determining that the operation is cacheable or non-
cacheable;
transmitting the address to the TLB in response to deter-
mining the operation is cacheable or non-cacheable
and is the oldest load operation; and
determining whether the TLB returns an address hit or
an address miss for the oldest load operation.
8. The method of claim 7, further comprising:
performing a page translation in response to determining
the address miss for the oldest load operation.
9. The method of claim 7, wherein:
storing the translation in the buffer is performed further in
response to the address hit for the oldest load operation.
10. The method of claim 9, further comprising:
accessing the translation for the oldest load operation from
the buffer; and
wherein executing the oldest load operation comprising
executing the selected oldest load operation using the
translation accessed from the buffer.
11. The method of claim 1, wherein the operation is at least
one of a speculative operation or a non-cacheable operation.
12. The method of claim 1, wherein the operation is mis-
aligned with respect to at least one of a cache line or a page.
13. The method of claim 12, wherein each portion of the
misaligned operation has a respective, valid memory transla-
tion.

US 9,286,233 B2

13

14. The method of claim 13, further comprising:

storing each portion of the translation for a misaligned
operation in the buffer, wherein storing each portion of
the translation for the misaligned operation in the buffer
is performed in response to an address hit for each por-
tion of the misaligned operation in the buffer is per-
formed in response to an address hit for each portion of
the misaligned operation.

15. The method of claim 14, wherein storing the translation
for each portion of the misaligned operation comprises at
least one of:

processing and storing each portion of the translation for

the misaligned operation independently of each other;
processing and storing each portion of the translation for
the misaligned operation sequentially; or

processing and storing each portion of the translation for

the misaligned operation in parallel.

16. A non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform a method, the
method comprising:

dispatching an operation to the processing device;

in response to determining that the operation is the oldest

load operation:

storing a translation for the operation in a buffer config-
ured to hold only the translation for the oldest load
operation in a processing system; and

executing the operation using the translation.

17. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 16, further comprising:

generating an address for the operation subsequent to the

dispatching of the operation to a load-store unit.

18. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 17, further comprising:

transmitting the address to a translation look-aside buffer

(TLB);

determining whether the TLB returns an address hit or an

address miss; and

performing a page translation in response to determining

an address miss.

19. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 18, wherein performing the page translation com-
prises performing a tablewalk, and further comprising:

performing one or more actions until an address hit is

returned by the TLB, the one or more actions compris-

ing:

determining whether the TLB returns an address hit or
an address miss in response to performing the page
translation; and

performing a subsequent page translation in response to
determining the most recent address miss.

20. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 18, further comprising:

performing, in response to determining an address hit, at

least one of:
determining that the operation is cacheable or non-
cacheable;

10

15

20

25

30

35

40

45

50

55

60

14

transmitting the address to a translation look-aside
buffer (TLB) in response to determining the operation
is cacheable or non-cacheable and is the oldest load
operation; and
determining whether the TLB returns an address hit or
an address miss for the oldest load operation.
21. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 20, further comprising at least one of:
performing a page translation in response to determining
the address miss for the oldest load operation; and

wherein storing the translation for the oldest load operation
in the buffer is performed further in response to the
address hit for the oldest load operation.

22. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 21, further comprising:

accessing the translation for the oldest load operation from

the buffer; and

wherein executing the selected oldest load operation com-

prises executing the selected oldest load operation using
the accessed translation.

23. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 16, wherein the operation is at least one of a specu-
lative operation or a non-cacheable operation.

24. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 16, wherein the operation is misaligned with respect
to at least one of a cache line or a page, and wherein each
portion of the misaligned operation has a respective, valid
memory translation.

25. The non-transitory, computer-readable storage device
encoded with data that, when executed by a processing
device, adapts the processing device to perform the method as
in claim 24, further comprising:

storing each portion of the translation for the misaligned

operation in the buffer, wherein storing each portion of
the translation for the misaligned operation in the buffer
is performed in response to an address hit for each por-
tion of the misaligned operation; and

wherein storing each portion of the translation for the mis-

aligned operation comprises at least one of:

processing and storing each portion of the translation for
the misaligned operation independently of each other;

processing and storing each portion of the translation for
the misaligned operation sequentially; or

processing and storing each portion of the translation for
the misaligned operation in parallel.

26. An apparatus, comprising:

a translation look-aside buffer (TL.B) content addressable

memory (CAM);

an oldest operation storage buffer operationally coupled to

the TLB CAM, wherein the oldest operation storage
buffer is configured to hold only the translation for the
oldest load operation in a processing system; and
an output multiplexor operationally coupled to the TLB
CAM and to the oldest operation storage buffer.

27. The apparatus of claim 26, further comprising:

an input multiplexor, wherein the output multiplexor and
the oldest operation storage buffer are respectively
operationally coupled to the TLB CAM through the
input multiplexor.

US 9,286,233 B2
15

28. The apparatus of claim 27, further comprising:

a load queue adapted to transmit one or more signals to at
least one of the TLB CAM, the input multiplexor, the
oldest operation storage buffer, or the output multi-
plexor. 5

29. The apparatus of claim 28, wherein the load queue is
further adapted to:

receive one or more signals from at least one of the TLB
CAM, the input multiplexor, the oldest operation storage
buffer, or the output multiplexor; and 10

update the state of at least one load queue entry based upon
the one or more received signals.

30. The apparatus of claim 26, wherein the output multi-
plexor is configured to select as an input one of data from the
oldest operation storage buffer or data from the TLB CAM 15
based on a first input signal.
31. The apparatus of claim 26, wherein the output multi-
plexor is configured to transmit an output to a load-store unit
of a processing device.
32. A non-transitory, computer-readable storage device 20
encoded with data that, when executed by a fabrication facil-
ity, adapts the fabrication facility to manufacture an appara-
tus, the apparatus comprising:
a translation look-aside buffer (TLB) content addressable
memory (CAM); 25

an oldest operation storage buffer operationally coupled to
the TLB CAM, the oldest operation storage buffer con-
figured to hold only the translation for the oldest load
operation in a processing system; and

an output multiplexor operationally coupled to the TLB 30
CAM and to the oldest operation storage buffer.

#* #* #* #* #*

